GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation
نویسندگان
چکیده
Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF) signaling pathway in early embryoid bodies (EBs). Gcn5-/- EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.
منابع مشابه
Effect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملInvestigating the inhibitory effect of miR-34a, miR-449a, miR-1827, and miR-106b on target genes including NOTCH1, c-Myc, and CCND1 in human T cell acute lymphoblastic leukemia clinical samples and cell line
Objective(s): microRNAs are small non-coding molecules that regulate gene expression in various biological processes. T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy accompanied with genetic aberrations and accounts for 20% of children’s and adult’s ALL. Notch signaling pathway dysregulation occurs in 60% of T-ALL cases. In the present study, we aimed to de...
متن کاملFRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity.
RATIONALE Although the fibroblast growth factor (FGF) signaling axis plays important roles in heart development, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. OBJECTIVE To investigate the mechanism by which FGF signaling regulates cardiac progenitor cell differentiation. METHODS AND RESULTS Using mice with tissue-specific ablation of FGF receptors...
متن کاملCellular Biology FRS2 -Mediated FGF Signals Suppress Premature Differentiation of Cardiac Stem Cells Through Regulating Autophagy Activity
Rationale: Although the fibroblast growth factor (FGF) signaling axis plays important roles in heart development, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. Objective: To investigate the mechanism by which FGF signaling regulates cardiac progenitor cell differentiation. Methods and Results: Using mice with tissue-specific ablation of FGF receptors ...
متن کاملOriginal Research FRS2 -Mediated FGF Signals Suppress Premature Differentiation of Cardiac Stem Cells Through Regulating Autophagy Activity
Rationale: Although the fibroblast growth factor (FGF) signaling axis plays important roles in heart development, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. Objective: To investigate the mechanism by which FGF signaling regulates cardiac progenitor cell differentiation. Methods and Results: Using mice with tissue-specific ablation of FGF receptors ...
متن کامل